Comparteix:

Programació del Seminari: Any 2022


 

 

  •  Divendres, 10 de juny de 2022. Hora: 12:00

  Lorenzo Capello. Department of EconomicsUniversitat Pompeu Fabra

  An efficient coalescent model for heterochronously sampled data

 

 

 


Inici


  

An efficient coalescent model for heterochronously sampled data

CONVIDATSLorenzo Capello

IDIOMA: Anglès

LLOC Seminari EIO, ETSEIB (ed. Eng. Industrial), Planta 6, Campus Sud. UPC, Av. Diagonal 647, Barcelona.

DATA: Divendres, 10 de juny de 2022. Hora: 12:00

RESUM: The observed sequence variation at a locus informs about the evolutionary history of the sample and past population size dynamics. The Kingman coalescent is used in a generative model of molecular sequence variation to infer evolutionary parameters. However, it is well understood that inference under this model does not scale well with sample size. In the talk, we will discuss recent works based on a lower resolution coalescent process, the Tajima coalescent, to model longitudinal samples. While the Kingman coalescent models the ancestry of labeled individuals, we will model the ancestry of individuals labeled by their sampling time. Some interesting statistical questions arise when trying to fit this model, and we will discuss them. The need to model longitudinal samples was motivated by applications (e.g., ancient DNA and RNA from rapidly evolving pathogens like viruses). Part of the talk will discuss some of these and possible future directions. .

SOBRE L'AUTOR:  Lorenzo is an assistant professor in the Statistics group at Universitat Pompeu Fabra, Department of Economics, and affiliated professor at the Barcelona School of Economics. Previously, he was a postdoctoral scholar in the Department of Statistics at Stanford University. He earned his Ph.D in Statistics in 2018 from the Department of Decision Sciences at the Bocconi University. His research focuses on providing computationally manageable methods and scalable algorithms that adapt to big data problems. His research is motivated by specific questions that arise in applications - in particular population genetics and applied mathematics - and address them using statistical methods. For more information on his research interest, see https://lorenzocapp.github.io/

 

 


Inici

Una científica en temps de pandèmia: les matemàtiques com a eina clau en el control de la COVID-19

CONVIDATS: Clara Prats

IDIOMA: Català

LLOC Sala d'Actes Manuel Martí Recober (FIB), Planta 0, Edifici B6, Campus Nord. UPC, Barcelona.

DATA: Dimarts, 14 de juny de 2022. Hora: 12:30

RESUM: Fa dos anys, la pandèmia de COVID‐19 va capgirar les nostres vides. Des del món de la ciència, sovint massa tancat, ens vam trobar que calia fer un pas (o molts!) endavant i posar‐nos al servei de la societat en plena emergència. Durant aquest temps, les matemàtiques han estat l’eina imprescindible per analitzar les dades epidemiològiques i transformar una situació complexa en un conjunt d’indicadors objectius, vàlids per comprendre aquesta situació i donar suport a la presa de decisions. També han estat una eina molt important per entendre l’evolució de la pandèmia, amb les seves onades successives i l’efecte de les diverses mesures en la seva modulació. Finalment, els models matemàtics han estat imprescindibles en l’anàlisi de les dinàmiques de propagació i en les prediccions a curt i mitjà termini. Les matemàtiques, doncs, han estat una peça essencial en els equips interdisciplinaris que han treballat per la pandèmia des de la ciència i des de la gestió..

SOBRE L'AUTORA:  Clara Prats és llicenciada en Física per la Universitat de Barcelona i és doctora en Física aplicada i simulació en ciència per la UPC.  Actualment és professora titular al departament  de Física,  investigadora del grup  Computational Biology and Complex Systems (BIOCOM-SC) i responsable de models computacionals al Centre for Comparative Medicine and Bioimaging (CMCiB) de l'Institut Germans Trias i Pujol (IGTP). La seva recerca es centra en l'ús de models computacionals per l'estudi de malalties infeccioses; principalment, tuberculosi i COVID-19. Podeu trobar més informació sobre na Clara, en aquest enllaç.


Inici

Model selection and model uncertainty quantification in survival models

CONVIDATS: María Eugenia Castellanos

IDIOMA: Castellà

LLOC Seminari EIO, ETSEIB (ed. Eng. Industrial), Planta 6, Campus Sud. UPC, Av. Diagonal 647, Barcelona.

DATADimecres, 29 de juny de 2022. Hora: 12:00

RESUM: We consider covariate selection and the ensuing model uncertainty aspects in the context of survival regression, specifically for log-normal and Cox regression. The perspective we take is probabilistically handled within a Bayesian framework. One of the critical elements in variable/model selection is choosing a suitable prior for model parameters. Here we derive the so-called conventional prior approach and propose a comprehensive implementation that results in an automatic procedure. Our simulation studies and real applications show improvements over existing literature. Finally, with our proposal is possible to make predictions about the survival function for a specific type of patient, incorporating all the uncertainty probabilistically. Trabajo conjunto con Gonzalo García-Donato y Stefano Cabras.

SOBRE L'AUTORA:  María Eugenia Castellanos es catedrática de Estadística e Investigación Operativa en la Universidad Rey Juan Carlos de Madrid dónde imparte clases en diversos grados y masters, además de ocuparse actualmente de la Subdirección de Relaciones Internacionales e Investigación de la Escuela Técnica Superior de Ingeniería Informática. Anteriormente ha trabajado en la Universidad Miguel Hernández y la Universidad de Valencia. Su investigación se centra en la estadística bayesiana, en ámbitos como el contraste y selección de modelos, el análisis de supervivencia y modelos para valores extremos entre otros. Más información en: https://mecastellanos.wordpress.com/.


 

Inici

Understanding complex predictive models through Ghost Variables

CONVIDATPedro Delicado

IDIOMA: Castellà

LLOC:  Seminari EIO, ETSEIB (ed. Eng. Industrial), Planta 6, Campus Sud. UPC, Av. Diagonal 647, Barcelona.

DATA: Divendres, 11 de novembre de 2022. Hora: 12:30

 

RESUM: Machine Learning (ML) models are more and more accurate in their predictions, many times at the cost of an increasing complexity, which is why we often refer to them as “black boxes”. A whole literature has recently appeared (Interpretable ML) whose purpose is to provide transparency and interpretability to predictive algorithms. In this context, we propose a procedure for assigning a relevance measure to each explanatory variable in a complex predictive model. Assuming that a test set is available, the individual relevance of a variable is computed by comparing the model predictions for the test set with those given for a modified test set, in which the variable of interest is substituted by its “ghost variable”, defined as the prediction of this variable as a function of the rest of explanatory variables. We illustrate our proposal with simulated examples and the analysis of a real data set on rental housing. (Based on a joint paper with Daniel Peña: TEST, 2022, DOI 10.1007/s11749-022-00826-x.)

SOBRE L'AUTOR:  
Pedro Delicado is Professor of Statistics at UPC. His research activity has been mainly dedicated to Functional Data Analysis (focusing on dimensionality reduction and spatial dependency), but in recent years he is also interested in exploring the links between Statistics and Machine Learning, with special interest in the interpretability of predictive models.Más información en: http://www-eio.upc.edu/~delicado/index.html.



Inici